Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.

Identifieur interne : 001521 ( Main/Exploration ); précédent : 001520; suivant : 001522

Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.

Auteurs : Xue Li Guan [Singapour] ; Cleiton M. Souza ; Harald Pichler ; Gisèle Dewhurst ; Olivier Schaad ; Kentaro Kajiwara ; Hirotomo Wakabayashi ; Tanya Ivanova ; Guillaume A. Castillon ; Manuele Piccolis ; Fumiyoshi Abe ; Robbie Loewith ; Kouichi Funato ; Markus R. Wenk ; Howard Riezman

Source :

RBID : pubmed:19225153

Descripteurs français

English descriptors

Abstract

Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol-sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol-sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.

DOI: 10.1091/mbc.e08-11-1126
PubMed: 19225153
PubMed Central: PMC2663937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.</title>
<author>
<name sortKey="Guan, Xue Li" sort="Guan, Xue Li" uniqKey="Guan X" first="Xue Li" last="Guan">Xue Li Guan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Souza, Cleiton M" sort="Souza, Cleiton M" uniqKey="Souza C" first="Cleiton M" last="Souza">Cleiton M. Souza</name>
</author>
<author>
<name sortKey="Pichler, Harald" sort="Pichler, Harald" uniqKey="Pichler H" first="Harald" last="Pichler">Harald Pichler</name>
</author>
<author>
<name sortKey="Dewhurst, Gisele" sort="Dewhurst, Gisele" uniqKey="Dewhurst G" first="Gisèle" last="Dewhurst">Gisèle Dewhurst</name>
</author>
<author>
<name sortKey="Schaad, Olivier" sort="Schaad, Olivier" uniqKey="Schaad O" first="Olivier" last="Schaad">Olivier Schaad</name>
</author>
<author>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
</author>
<author>
<name sortKey="Wakabayashi, Hirotomo" sort="Wakabayashi, Hirotomo" uniqKey="Wakabayashi H" first="Hirotomo" last="Wakabayashi">Hirotomo Wakabayashi</name>
</author>
<author>
<name sortKey="Ivanova, Tanya" sort="Ivanova, Tanya" uniqKey="Ivanova T" first="Tanya" last="Ivanova">Tanya Ivanova</name>
</author>
<author>
<name sortKey="Castillon, Guillaume A" sort="Castillon, Guillaume A" uniqKey="Castillon G" first="Guillaume A" last="Castillon">Guillaume A. Castillon</name>
</author>
<author>
<name sortKey="Piccolis, Manuele" sort="Piccolis, Manuele" uniqKey="Piccolis M" first="Manuele" last="Piccolis">Manuele Piccolis</name>
</author>
<author>
<name sortKey="Abe, Fumiyoshi" sort="Abe, Fumiyoshi" uniqKey="Abe F" first="Fumiyoshi" last="Abe">Fumiyoshi Abe</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
<author>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
</author>
<author>
<name sortKey="Wenk, Markus R" sort="Wenk, Markus R" uniqKey="Wenk M" first="Markus R" last="Wenk">Markus R. Wenk</name>
</author>
<author>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19225153</idno>
<idno type="pmid">19225153</idno>
<idno type="doi">10.1091/mbc.e08-11-1126</idno>
<idno type="pmc">PMC2663937</idno>
<idno type="wicri:Area/Main/Corpus">001538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001538</idno>
<idno type="wicri:Area/Main/Curation">001538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001538</idno>
<idno type="wicri:Area/Main/Exploration">001538</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.</title>
<author>
<name sortKey="Guan, Xue Li" sort="Guan, Xue Li" uniqKey="Guan X" first="Xue Li" last="Guan">Xue Li Guan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Souza, Cleiton M" sort="Souza, Cleiton M" uniqKey="Souza C" first="Cleiton M" last="Souza">Cleiton M. Souza</name>
</author>
<author>
<name sortKey="Pichler, Harald" sort="Pichler, Harald" uniqKey="Pichler H" first="Harald" last="Pichler">Harald Pichler</name>
</author>
<author>
<name sortKey="Dewhurst, Gisele" sort="Dewhurst, Gisele" uniqKey="Dewhurst G" first="Gisèle" last="Dewhurst">Gisèle Dewhurst</name>
</author>
<author>
<name sortKey="Schaad, Olivier" sort="Schaad, Olivier" uniqKey="Schaad O" first="Olivier" last="Schaad">Olivier Schaad</name>
</author>
<author>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
</author>
<author>
<name sortKey="Wakabayashi, Hirotomo" sort="Wakabayashi, Hirotomo" uniqKey="Wakabayashi H" first="Hirotomo" last="Wakabayashi">Hirotomo Wakabayashi</name>
</author>
<author>
<name sortKey="Ivanova, Tanya" sort="Ivanova, Tanya" uniqKey="Ivanova T" first="Tanya" last="Ivanova">Tanya Ivanova</name>
</author>
<author>
<name sortKey="Castillon, Guillaume A" sort="Castillon, Guillaume A" uniqKey="Castillon G" first="Guillaume A" last="Castillon">Guillaume A. Castillon</name>
</author>
<author>
<name sortKey="Piccolis, Manuele" sort="Piccolis, Manuele" uniqKey="Piccolis M" first="Manuele" last="Piccolis">Manuele Piccolis</name>
</author>
<author>
<name sortKey="Abe, Fumiyoshi" sort="Abe, Fumiyoshi" uniqKey="Abe F" first="Fumiyoshi" last="Abe">Fumiyoshi Abe</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
<author>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
</author>
<author>
<name sortKey="Wenk, Markus R" sort="Wenk, Markus R" uniqKey="Wenk M" first="Markus R" last="Wenk">Markus R. Wenk</name>
</author>
<author>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy (MeSH)</term>
<term>Biological Transport (drug effects)</term>
<term>Caffeine (pharmacology)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (physiology)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Sorbic Acid (pharmacology)</term>
<term>Sphingolipids (chemistry)</term>
<term>Sphingolipids (metabolism)</term>
<term>Sterols (biosynthesis)</term>
<term>Sterols (chemistry)</term>
<term>Sterols (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide sorbique (pharmacologie)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Anisotropie (MeSH)</term>
<term>Caféine (pharmacologie)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (physiologie)</term>
<term>Mutation (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sphingolipides (composition chimique)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Stérols (biosynthèse)</term>
<term>Stérols (composition chimique)</term>
<term>Stérols (métabolisme)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Sterols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sphingolipids</term>
<term>Sterols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sphingolipids</term>
<term>Sterols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Caffeine</term>
<term>Sirolimus</term>
<term>Sorbic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Stérols</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sphingolipides</term>
<term>Stérols</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biological Transport</term>
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Membrane cellulaire</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Sphingolipides</term>
<term>Stérols</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide sorbique</term>
<term>Caféine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Membrane cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Anisotropy</term>
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Anisotropie</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol-sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol-sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19225153</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.</ArticleTitle>
<Pagination>
<MedlinePgn>2083-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E08-11-1126</ELocationID>
<Abstract>
<AbstractText>Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol-sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol-sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guan</LastName>
<ForeName>Xue Li</ForeName>
<Initials>XL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Souza</LastName>
<ForeName>Cleiton M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pichler</LastName>
<ForeName>Harald</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dewhurst</LastName>
<ForeName>Gisèle</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schaad</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kajiwara</LastName>
<ForeName>Kentaro</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wakabayashi</LastName>
<ForeName>Hirotomo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ivanova</LastName>
<ForeName>Tanya</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Castillon</LastName>
<ForeName>Guillaume A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piccolis</LastName>
<ForeName>Manuele</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Abe</LastName>
<ForeName>Fumiyoshi</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loewith</LastName>
<ForeName>Robbie</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Funato</LastName>
<ForeName>Kouichi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wenk</LastName>
<ForeName>Markus R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riezman</LastName>
<ForeName>Howard</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013261">Sterols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3G6A5W338E</RegistryNumber>
<NameOfSubstance UI="D002110">Caffeine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X045WJ989B</RegistryNumber>
<NameOfSubstance UI="D013011">Sorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Mol Biol Cell. 2012 Jul;23(13):2402</RefSource>
<PMID Version="1">22745339</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016880" MajorTopicYN="N">Anisotropy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002110" MajorTopicYN="N">Caffeine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013011" MajorTopicYN="N">Sorbic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013261" MajorTopicYN="N">Sterols</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19225153</ArticleId>
<ArticleId IdType="pii">E08-11-1126</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.e08-11-1126</ArticleId>
<ArticleId IdType="pmc">PMC2663937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2008 Dec 15;183(6):1075-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 1999 Oct;1(6):386-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;311:335-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10563338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Nov;10(11):3943-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10564282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12422-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 15;275(50):39793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2000 Nov;1(11):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Mar 9;1511(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 20;276(16):12702-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Jun;12(6):1725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jun 7;296(5574):1821-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12052946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Aug;13(8):2664-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12181337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Aug;161(4):1453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2002 Oct;383(10):1475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12452424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Dec;13(12):4414-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Jun 23;161(6):1117-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12810702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 19;279(12):11537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Feb;5(2):110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15040444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4083-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Apr;22(4):445-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Oct;2(10):e280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Feb 25;258(4):2284-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6822559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Jul 10;258(13):8503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6863298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 May;175(10):2853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8491706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Sep 3;261(5126):1280-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8362242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Aug 15;13(16):3687-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8070398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jun 5;387(6633):569-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Sep 9;36(36):10944-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9283086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11179-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9326582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 21;272(47):29704-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6374-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Aug 3;17(15):4257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Aug;181(15):4644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10419965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Dec 1;117(Pt 25):6031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15536122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets Infect Disord. 2004 Dec;4(4):311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 8;280(14):13321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2005;34:351-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12662-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16120676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Nov;7(11):1118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jan 13;124(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 17;281(7):4013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Apr;26(7):2817-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Apr 10;173(1):107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Apr 30;23(6):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Oct 9;580(23):5518-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16797010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6392-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Nov;6(7):1047-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17042754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2006 Dec 28;110(51):25562-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Jan;9(1):7-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17199125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Feb 15;92(4):1125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2007;36:63-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17201675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):24388-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17595166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Feb 25;180(4):813-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18513215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
<orgName>
<li>Université nationale de Singapour</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Abe, Fumiyoshi" sort="Abe, Fumiyoshi" uniqKey="Abe F" first="Fumiyoshi" last="Abe">Fumiyoshi Abe</name>
<name sortKey="Castillon, Guillaume A" sort="Castillon, Guillaume A" uniqKey="Castillon G" first="Guillaume A" last="Castillon">Guillaume A. Castillon</name>
<name sortKey="Dewhurst, Gisele" sort="Dewhurst, Gisele" uniqKey="Dewhurst G" first="Gisèle" last="Dewhurst">Gisèle Dewhurst</name>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
<name sortKey="Ivanova, Tanya" sort="Ivanova, Tanya" uniqKey="Ivanova T" first="Tanya" last="Ivanova">Tanya Ivanova</name>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<name sortKey="Piccolis, Manuele" sort="Piccolis, Manuele" uniqKey="Piccolis M" first="Manuele" last="Piccolis">Manuele Piccolis</name>
<name sortKey="Pichler, Harald" sort="Pichler, Harald" uniqKey="Pichler H" first="Harald" last="Pichler">Harald Pichler</name>
<name sortKey="Riezman, Howard" sort="Riezman, Howard" uniqKey="Riezman H" first="Howard" last="Riezman">Howard Riezman</name>
<name sortKey="Schaad, Olivier" sort="Schaad, Olivier" uniqKey="Schaad O" first="Olivier" last="Schaad">Olivier Schaad</name>
<name sortKey="Souza, Cleiton M" sort="Souza, Cleiton M" uniqKey="Souza C" first="Cleiton M" last="Souza">Cleiton M. Souza</name>
<name sortKey="Wakabayashi, Hirotomo" sort="Wakabayashi, Hirotomo" uniqKey="Wakabayashi H" first="Hirotomo" last="Wakabayashi">Hirotomo Wakabayashi</name>
<name sortKey="Wenk, Markus R" sort="Wenk, Markus R" uniqKey="Wenk M" first="Markus R" last="Wenk">Markus R. Wenk</name>
</noCountry>
<country name="Singapour">
<noRegion>
<name sortKey="Guan, Xue Li" sort="Guan, Xue Li" uniqKey="Guan X" first="Xue Li" last="Guan">Xue Li Guan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19225153
   |texte=   Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19225153" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020